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LETTER TO THE EDITOR 

On a new method of series analysis in lattice statistics? 
A J GUTTMANNS and G S JOYCE5 
$School of Mathematics, University of Newcastle, Newcastle, NSW 2308, Australia 
§Wheatstone Physics Laboratory, King's College, Strand, London, WC2R 2LS, UK 

MS received 14 July 1972 

Abstract. A new recurrence relation method for analysing the singular behaviour 
of series expansions is described. It is shown using plausible nonrigorous arguments 
that the method can resolve logarithmic singularities and finite cusp singularities. 

A basic problem in the lattice statistical theories of critical phenomena is the deter- 
mination of the behaviour of a given thermodynamic function +(r) in the neighbour- 
hood of its physical and nonphysical singularities. In the standard approximate 
approach to this problem the function +(T) is expanded as a Taylor series in the form 

where z = z(T)  is a suitable high or low temperature expansion variable, and the 
coefficients co, c1. . . C, are calculated exactly. The singular behaviour of +(z) in the 
complex z plane is then investigated by applying various series analysis techniques to 
the truncated series X ~ = o ~ n z n .  (For reviews of these techniques see Fisher 1967, Gaunt 
and Guttmann 1972.) 

The main aim in this letter is to present a new general method for the analysis and 
study of series expansions which arise in lattice statistics. In this method we fit the 
available series coefficients co, c1,. , , C, in the expansion (1) to an (M+1) term 
recurrence relation of the form 

M 

RZ,M(CJ E 2 { ~ t , 2 ( n  - O2 + ~ , , , ( n  - i) + Aj,o}cn-f = 0 (n 2 1) (2) 
i = o  

with 1, Ao,o = 0, and c-, = 0 (n = 1,2,  . . .). The set of unknown coefficients 
{Ao, l ;  Ai ,2 ,  Ai,1,  i = 1 , 2 , .  . . M }  is determined in terms of the coefficients 
co, c1, . . . cN by solving the set of recurrence relations {R2,M(c1) = 0, Rz,M(C2) = 0, 
. , . Rz M ( ~ 3 M + 1 )  = O}. We repeat this procedure for all values of M in the range 
1 < M < [+ (N-  l)], (where [x ]  denotes the largest integer which is not greater than x )  
and hence obtain a set of approximate recurrence relations {R2,M(~,) = 0, M = 1,2, . , . 
[+ (N-  l)]} for the series coefficients c,. 

Each recurrence relation Rz,M(~,)  = 0 essentially defines a function I ,!I~(z) whose 
series expansion agrees with the expansion (1) through terms of order 3M+ 1. Thus, 
we have 

(3) 
t This research has been supported (in part) by the United States Department of the Army through 
its European Office. 

+(z) = +M(Z)  + 0 ( z 3 ~ + 2 ) .  
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The functions t,hM(z), therefore, provide a set of approximate ‘representations’ for the 
thermodynamic function $(z). Estimates for the singular behaviour of $(z) are then 
derived by investigating the appropriate singularities of the representations $ M ( ~ ) .  

It may be readily verified that each representation $ M ( ~ )  satisfies the second-order 
differential equation 

where 

We can now determine the non-analytic behaviour of the representation I + ~ ~ ( z )  by 
applying standard techniques to this differential equation (see Whittaker and Watson 
1927, Ince 1927). In order to simplify the discussion we shall assume that the zeros 
zo = 0, zl, . . . 2, of the polynomial Q(z) are all distinct (with AM.2 # 0), and that the 
polynomials Q(z), R(z) and S(z) have no common factors. For this ‘general’ case the 
differential equation (4) is a Fuchsian equation which has M + 2  regular singular 
points at z = za(a = 0, 1, , . . M ) ,  and z = 00. The exponents pa, 6, at each regular 
singular point are calculated in the usual manner by solving the corresponding 
indicia1 equation. We find 

(a = O , l , .  . . M )  
R(z) 

2 +za Q b )  
pa = 1 - lim(z-za)- 

with 6, = 0. (The regular singular point at z = 00 requires a separate treatment.) 
The Riemannian scheme (Ince 1927) associated with the differential equation (4) is 
given by 

0 z1 z2 ... zy CO 

0 0 . . .  0 5, (7) .I* Po O P1 P2 * * P&f P.0 

It is interesting to note that the exponents in this scheme always satisfy the relation 
M 

(6, +Pm)+ 2 Pa = M .  (8) 
a x 0  

The behaviour of the representation in the neighbourhood of each regular 
singular point za(x = 1, . . . M )  is, in general, described by an analytic continuation 
of the form 

# M ( Z )  = +l(z) + (za- z)Da+2(z> ( P a # O , + I , f 2 , . . . )  
= +3(8 +M4 In (za - z! (Pa = 0) 
= + 6 ( z ) + ~ 1 ( ~ a - ~ ) D + 6 ( ~ )  In (z,-z) 

= { 1 +e2 In (2 ,  - z)}+,(z) + (z, - Z ) ~ ~ + ~ ( Z )  
(Pa = 192,. * .) 

(p, = -1, - 2 . .  . .) (9) 
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where the functions $,(z) are analytic and nonzero at z = z,, and c1, c2 are contants 
which are not necessarily direrent from zero (see Whittaker and Watson 1927). In 
order to establish a link between equation (9) and the non-analytic properties of the 
thermodynamic function $(z) we assume that $(z) displays physical and nonphysical 
singularities at z = w i ( i  = 1, 2 , .  . . q), and that the structure of each singularity is 
given by equation (9) with an exponent A,(i = 1, 2, . . . 4). Under these circumstances 
it is reasonable to conjecture that a subset of the set {za, pa; CI = 1, , . . M }  will yield 
approximations for the required set of positions and exponents {ut, h i ;  i = 1, . . , q}, 
provided that M 2 q. This conjecture forms the basis for the recurrence relation 
method of series analysis. 

From the above discussion it is evident that the recurrence relation method can 
deal directly with finite cusp singularities (A ,  > 0), and with 'weak' nonfactorizable 
divergent singularities (A ,  Q 0). Furthermore, the method can be used to analyse 
functions $(z) which have several physical and nonphysical singularities on or outside 
the circle of convergence IzI = ro. We see, therefore, that the recurrence relation 
technique is, at  least in principle, more powerful than any other method of series 
analysis which is currently available. In addition, the method provides one with a 
mathematical tool for deducing exact recurrence relations and differential equations 
in lattice statistics and in the theory of special functions. For example, if the recurrence 
relation procedure is applied to the low temperature expansion of the Onsager 
expression (Onsager 1944) for the internal energy of the two dimensional Ising model 
one obtains an exact recurrence relation of the type (2) with M = 8 (Joyce, unpublished 
work). 

A straightforward generalization of the recurrence relation method can be achieved 
by fitting the coefficients co, c1,. . . C, to an ( M f l )  term recurrence relation of the 
type M K  

R K , M ( C n )  = ( 2 At,k(n-i)k)cn-t = (n  1) (10) 
f = O  k=O 

with AO,K 0, and c-, = 0, (n = 1 ,2 , .  . .). In this scheme the represen- 
tations i,bM(z) satisfy a Kth order Fuchsian differential equation. The singular behaviour 
of t,bM(z) can be readily found using standard techniques (Ince 1927). When K = 1 the 
representation t,bM(z) satisfies the equation 

1, Ao,o 

with Ao,l  1. This differential equation can also be constructed by forming the 
[ M ,  M -  11 Pad6 approximant to the logarithmic derivative of the series (1). We see, 
therefore, that the recurrence relation method for K 3 2 is a natural generalization 
of the standard [M,  M -  13 Pad6 approximant method of series analysis (Baker 1961). 
An extension of the recurrence relation scheme (10) can be made by formally defining 

= 0, for i > Mk (Mk Q M,  k = 0, 1 ... K). This procedure leads to a (K+ 1) 
dimensional array of representations &[MO, MI ... MK; 21, which in general satisfy 
non-Fuchsian Kth order differential equations. It is also possible to fit the coefficients 
co, c1 ... c, t o  an inhomogeneous Kth order recurrence relation. A detailed account of 
of these generalizations will be given elsewhere. 

The recurrence relation method is currently being applied to a wide variety of series 
expansions in lattice statistics. We hope to discuss these applications in future publi- 
cations. 

PA 
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We are extremely grateful to Dr M F Sykes for proposing various recurrence relation 
problems in the theory of the Ising model, from which the recurrence relation method 
evolved. 
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